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1. Introduction

Coulomb collisions in weakly collisional plasmas are essentially kinetic phenomenon and need a kinetic treatment. In
particle-in-cell codes the Coulomb collisions are often modeled by stochastic energy and momentum exchange between
randomly paired particles [1–3]. Alternatively, one may use one-particle stochastic forcing given by the Langevin equation
corresponding to the Fokker–Planck one; this model was developed for isotropic, Maxwellian scatters [4,5]. However, weakly
collisional plasma often exhibit substantial particle temperature anisotropies (e.g., in the solar wind [6–8]). These observa-
tions motivated us to develop a stochastic Langevin model for bi-Maxwellian scatters. A general scheme for any velocity
distribution function has been proposed with pending implementation [9]. First, we derive the Rosenbluth potentials in
the bi-Maxwellian case (Section 2). The model is described in Section 3 and is tested on two simple cases of a proton tem-
perature isotropization in Section 4. Finally, the collisions are implemented in the framework of the hybrid expanding box
and tested in Section 5. In Section 6 we discuss the presented results.

2. Fokker–Planck equation and Rosenbluth potentials

Coulomb collision scattering may be approximated by a Fokker–Planck equation assuming a dominance of two-particle
small-angle interactions. The Fokker–Planck equation may be given in the following, Rosenbluth form (for symbol definitions
see Appendix B):
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where H and G are the Rosenbluth potentials
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one can obtain the following explicit form of the two potentials
Hs ¼ 4pv2
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where F is a triple hypergeometric function (see Appendix A). For the isotropic (Maxwellian case, As = 1, one recovers the
standard results:
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3. Langevin equation

The collisional diffusion in the velocity space is equivalent to a stochastic forcing [4]. Let us for simplicity assume only one
species and only interspecies collisions. We have the Fokker–Planck equation
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The Fokker–Planck Eq. (6) is equivalent to the Langevin equation in the finite difference form
Dv ¼ asDt þ Q ð9Þ
where Q is a random vector with the probability [4]
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where Ds
�1 is the inverse matrix of Ds. For a Maxwellian distribution function it is simple to generate the random vector

Q taking a coordinate system where v ¼ ð0;0;vÞ and where Ds is diagonal [4]. In the bi-Maxwellian case one can assume
coordinates where v ¼ ðvx;vy;vzÞ ¼ ðv?;0;vkÞ. In these coordinates it is easy to calculate @Hs=@v needed for acceleration:
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For the diffusion matrix we need to calculate @2Gs/@v@v which may be given as
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Fig. 1.
Eq. (13
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Note that in the above expressions, Eqs. (11) and (12), we have dropped the argument 1� As;Asv2
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s? of F. The
diffusion term @2Gs=@v@v is not diagonal and needs to be diagonalized but only in the two dimensional x–z plane which
is trivial. Then one gets a diagonalized diffusion matrix Ds and one can easily generate the random quantity Q [4].
4. Numerical tests

To test the Langevin model we consider only one population of protons (henceforth we will drop the proton index when
not necessary) with an initial bi-Maxwellian distribution function. The result of the Langevin model will be compared with
the predicted isotropization rate by proton-proton collisions: the isotropization frequency mT [10],
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where 2F1 is the standard (Gauss) hypergeometric function.
First we start with protons having T\ = 4Tk. We use 500,000 macroparticles representing the proton distribution function.

Each time step parallel and perpendicular thermal velocities are calculated from the macroparticles as second order mo-
ments. Then, particle velocities are advanced by the random force, Eq. (9), which is calculated for each particles using the
calculated moments; Evaluating the triple hypergeometric function F (we use its integral representation, Eq. (18)) for deriv-
atives of H and G for each particle is impractical; instead, we evaluate F on a 256 � 256 grid (for each set of parameters) in
the velocity space (vk,v\) and for each particle we interpolate the function values from this grid (the hypergeometric func-
tions are very smooth and we have tested that this method introduces only minimum differences between the real and inter-
polated values). We use a small time step Dt ¼ 10�4m�1

T0 where mT0 is the initial value of the isotropization frequency, Eq. (14).
Fig. 1 shows the results of the Langevin model: the solid line denotes the proton temperature anisotropy T\/Tk as a func-

tion of time t whereas the dotted line shows the predicted evolution of T\/Tk obtained by integration of Eq. (13) [12]. The
Langevin model initially exhibits very good agreement with the theoretical prediction based on Eq. (13). During the colli-
sional evolution the distribution function slightly departs from a bi-Maxwellian shape and therefore its evolution is not gov-
erned by Eq. (13) derived assuming the distribution function is exactly bi-Maxwellian. At the same time the Langevin model
based on the bi-Maxwellian velocity distribution function is strictly speaking no longer valid as well. The extend of these
departures is shown in Fig. 2 which shows the evolution of the third moments of the velocity distribution function (left)R

v3
?f d3v and (right)

R
jvkj3f d3v normalized to the bi-Maxwellian predictions 3ðp=2Þ1=2nv3

p? and 4nv3
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k f d3v=n). These departures from the bi-Maxwellian shape results from the strong velocity

dependent property of the Coulomb collisions. The less energetic, core protons thermalize faster while the more energetic
Proton temperature anisotropy T\/Tk as a function of time t (solid line). Dotted line shows the predicted evolution of T\/Tk obtained by integration of
).



Fig. 2. Evolution of the third moments of the velocity distribution function (left)
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protons thermalize slower. This effect generates an excess of the protons with larger perpendicular velocities leading to lar-
ger perpendicular moment

R
v3
?f d3v (as well as to smaller parallel moment

R
jvkj3f d3v) compared to the bi-Maxwellian

expectations. At later times the velocity distibution function thermalizes and the moments approach the Maxwellian
predictions.

For the next test we use the opposite initial temperature anisotropy Tk = 4T\. All the other parameters of the model are
the same as in the previous test. Fig. 3 shows the results of the Langevin model in second case: the solid line denotes the
proton temperature anisotropy Tk/T\ as a function of time t whereas the dotted line shows the predicted evolution of T\/
Tk obtained by integration of Eq. (13). Again the Langevin model exhibit initially a very good agreement with the theoretical
prediction based on Eq. (13). Later time deviation from this predicted evolution is caused by departures of the proton dis-
tribution function from a bi-Maxwellian shape as in the previous case. Fig. 4 shows the evolution of the third moments
of the velocity distribution function (left)

R
v3
?f d3v and (right)

R
jvkj3f d3v normalized to the bi-Maxwellian predictions

3ðp=2Þ1=2nv3
p? and 4nv3

pk=ð2pÞ1=2. In this case of the opposite anisotropy the velocity dependent Coulomb collisions generate
an excess of the protons with larger parallel velocities leading to larger parallel moment

R
jvkj3f d3v (as well as to smaller

perpendicular moment
R

v3
?f d3v) compared to the bi-Maxwellian expectations. At later times the velocity distibution func-

tion thermalizes and the moments approach the Maxwellian predictions.
Fig. 3. Proton temperature anisotropy Tk/T\ as a function of time t (solid line). Dotted line shows the predicted evolution of Tk/T\ obtained by integration of
Eq. (13).



Fig. 4. Evolution of the third moments of the velocity distribution function (left)
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5. Collisions in expanding box

In the previous tests the system started with anisotropic protons and than relaxed towards isotropy. In the solar wind the
expansion drives the temperature anisotropy continuously [13]. To study the response of the plasma to a slow expansion one
can use the expanding box model implemented in the hybrid code [14,15]. The expanding box simulations can model both
the anisotropy formation from expansion and its relaxation via collisions and kinetic instabilities. In the present Collisional
Hybrid Expanding Box (CHEB) model the expansion is described as an external force. One assumes a solar wind with a con-
stant radial velocity U at a radial distance R. Transverse scales (with respect to the radial direction) of a small portion of plas-
ma, co-moving with the solar wind velocity, increase with time y,z / (1 + t/te)y,z where te = R/U is a characteristic time of the
expansion. The expanding box uses these co-moving coordinates, the physical transverse scales of the simulation box in-
crease with time [15]. Coulomb collision are included by the Langevin stochastic random force.

The characteristic spatial and temporal units used in the model are c/xpp0 and 1/xcp0 respectively, We use the spatial
resolution Dx = Dy/2 = 2c/xp p0, and there are 1024 particles per cell. Fields and moments are defined on a 2D periodic x–
y grid with dimensions 256 � 256. Protons are advances using the Boris’ scheme with a time step Dt = 0.05/xcp0, while
the magnetic field B is advanced with a smaller time step DtB = Dt/10. The initial ambient magnetic field is directed along
the radial, x direction, B0 = (B0,0,0), and we impose a continuous expansion in y and z directions with a characteristic time
te = 104/xcp0. For the strictly radial magnetic field the expansion leads to a decrease of the ambient density and magnitude of
the magnetic field as n,B / (1 + t/te)�2. Collisional stochastic forcing through the Langevin equation is performed each 10
time steps; the initial isotropization frequency mT0 is chosen to be mT0te = 1/4. Protons are initialized with a bi-Maxwellian
distribution function with T\/Tk = 0.4 and bk = 0.3.

Without collisions the system would evolve in the doubly adiabatic manner (heat fluxes are neglected in the model as a
spatial homogeneity is assumed)
dTk
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if there are no wave activity [16]. When Coulomb collisions are present (and heat fluxes are negligible) one gets a theoretical
prediction for the evolution of the two temperatures by coupling Eqs. (13) and (15), i.e., taking d/dt = ( d/dt)CGL + (d/dt)coll.

The evolution of the proton temperature anisotropy in the 2D CHEB simulation with proton-proton collisions is shown in
Fig. 5. The solid line shows the proton temperature anisotropy T?=Tk as a function of time while the dotted line displays the
collisional prediction (coupled model of Eqs. (13) and (15)). As in the static case in the previous section the CHEB model results
is in a good agreement with the collisional prediction during an initial phase. Later on the model departs from the prediction,
first weakly then quite strongly; T?=Tk exhibits pronounced oscillations at later times. A natural suspect cause for such a
behavior is a kinetic instability driven by the temperature anisotropy. To verify the role of possible temperature-anisotropy
driven instability it is useful to display the evolution as a path in the space of the proton parallel beta bk and the proton tem-
perature anisotropy T?=TkÞwhich are dominant parameters for electromagnetic instabilities [16]. This is done in Fig. 6 show-



Fig. 5. Evolution in the 2D CHEB simulation: proton temperature anisotropy T?=Tk as a function of time. The dotted line displays the collisional prediction.
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ing the path by solid curves in the two panels (the empty circles denote the initial conditions). The dashed contours show the
linear prediction in a homogeneous plasma with bi-Maxwellian protons, the maximum growth rate cm (in units of xcp) as a
function of bk and T?=Tk for the parallel proton fire hose (left panel) and the oblique one (right panel). The dotted lines display
the collisional prediction whereas the dash-dotted lines show the collisionless double adiabatic predictions (Eq. (15)).

The evolution of the weakly collisional expansion exhibit oscillations in the space ðbk; T?=TkÞ. During the initial phase, the
system follows the collisional prediction given by the coupled system of Eqs. (13) and (15). Around the first crossing of the
cm = 10�3xcp contour of the parallel fire hose (Fig. 6, left panel) the system starts to deviated from the prediction partly be-
cause of collisionally induced departures from bi-Maxwellian shape (see previous section) and partly because of develop-
ment of the parallel fire hose instability which becomes the dominant phenomenon as the system gets relatively far into
the nominally instable region [17]. The system eventually enters the unstable region with respect to the oblique fire hose
and consequently it rapidly jumps back to the region stable to with respect to the oblique fire hose owing to the special
self-destructing nonlinear behavior of the oblique instability [16]. This phase starts close to the first crossing of the
cm = 10�3xcp contour of the oblique fire hose (Fig. 6, right panel). Afterwards, the system oscillates between the unstable
and stable regions (with respect to the oblique fire hose) with smaller variations of the temperature anisotropy T?=Tk The
later evolution of the weakly collisional system is dominated by instabilities similarly as in the collisionless system [16].

The interaction between protons and instability generated waves is resonant through normal and anomalous cyclotron
resonances [16]. The proton velocity distribution function is mainly affected at the resonances. Fig. 7 shows contour plots
of the proton distribution function f ðvk;v?Þ at (left) t = 0.4/mT0 and (right) at the end of the simulations. Velocities are given
in units of the Alfvén velocity vA = B0/(l0mp n)1/2 Fig. 7 (left panel) shows the result of the interaction between protons and
the parallel fire hose driven ion whistler waves: affected are mainly particles with high parallel velocities jvkj � 2vA which
are required for the anomalous cyclotron resonance [17]. Fig. 7 (right panel) shows mainly the effect of the proton scattering
Fig. 6. Evolution in the 2D CHEB simulation: path in the space ðbk; T?=TkÞ is shown by solid curves; the empty circles denote the initial conditions whereas
the full circles denotes the end of a first oscillation. The dashed contours shows the linear prediction in a homogeneous plasma with bi-Maxwellian protons,
the maximum growth rate (in units of xcp) as a function of bk and T?=Tk for (left) the parallel proton fire hose and (right) the oblique one. The dotted lines
display the collisional prediction whereas the dash-dotted lines show the collisionless, double adiabatic prediction.



Fig. 7. Contour plots of the proton distribution function f ðvk ;v?Þ at (left) t = 0.4/mT0 and (right) at the and of the simulations.
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by the oblique fire hose driven Alfvén waves interacting through the (normal) cyclotron resonance [16]. This scattering af-
fects strongly particles with jvkj � vA. The wave-particle interaction leads to departures of the velocity distribution function
and the bi-Maxwellian Langevin model is strictly speaking no longer valid.

6. Conclusions

Rosenbluth potentials for bi-Maxwellian particle distribution function (in the form of triple hypergeometric functions)
are derived and Langevin model corresponding to the Fokker–Planck collision term in bi-Maxwellian plasmas is developed,
generalizing the isotropic case [4]. The Langevin stochastic forcing was tested on simple case of proton temperature isotrop-
ization showing a good agreement between the model and predictions based on bi-Maxwellian transport coefficients when
the distribution functions are close to bi-Maxwellian. The collisional stochastic forcing was implemented into the hybrid
expanding box model. First results of this code show that in a (sufficiently) weakly collisional plasma Coulomb collisions
are unable to stop the proton temperature anisotropy driven by the expansion so that kinetic instabilities arise and bound
the proton temperature anisotropy.

Coulomb collisions as well as wave-particle interactions lead to departures of the velocity distribution function from the
bi-Maxwellian shape. Consequently, the bi-Maxwellian Langenvin model is strictly speaking no longer valid. We expect that
the model is an acceptable approximation of the Fokker–Plank model approximation [18] as long as the velocity distribution
function remains close to bi-Maxwellian shape (or to a superposion of bi-Maxwellian velocity distribution functions [4]). The
level of approximation for a given distribution function is, however, an open problem needing a comparison of the model
predictions with the results of the Fokker–Plank equation or with the general scheme [9].The presented bi-Maxwellian
Langevin model is more appropriate for anisotropic plasmas but is more complex and more computationally demanding
compared to the isotropic model.
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Appendix A. Triple hypergeometric function

F is a special case of the triple hypergeometric function [19] defined as
F
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where, (a)n is a Pochhammer symbol
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For b = d one can get the simple integral representation
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The derivation of Eq. (18) is analogous to that of the integral representation of the standard hypergeometric function [20,11].
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The triple hypergeometric function F has these useful recurrence properties
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Appendix B. Glossary

Here \ and k denote the directions with respect to the ambient magnetic field B0, B0 = jB0j denotes its the magnitude; v
(and u) denotes a velocity, v ¼ jv j being its magnitude, and vk and v\ denote magnitude of the velocity components parallel
and perpendicular to B0, respectively; t denotes the time. Here subscripts s (and t) denotes different species; p (or nothing)
stands for protons; subscript 0 denotes the initial value. Here fs denotes the velocity distribution function, and Ts\ and Tsk
denote the perpendicular and parallel temperatures, respectively; As = Ts\/Tsk is the temperature anisotropy and
bsk ¼ 2l0nskBTsk=B2

0 are is the parallel beta. Here xcs ¼ qsB0=ms and xps ¼ ðnsq2
s =ms�0Þ1=2 denote the cyclotron and plasma

frequencies, respectively, vsk = (kB Tsk/ms)1/2 and vs\ = (kBTs\/ms)1/2 denote the parallel and perpendicular thermal velocity,
respectively. In these expressions ms, qs, and ns denote the mass, the charge, and the number density, respectively (the pro-
ton charge is qp = e); �0 and l0 denote the vacuum electric permittivity and magnetic permeability, respectively; kB is Boltz-
mann constant. Here lnKst stands for the Coulomb logarithm and C is the standard Gamma function.
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